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L-Ultrafilters, L-Sets and Lc-Property

DUSAN MILOVANCEVIC

ABSTRACT. An L-filter base, L-filter, L-ultrafilter is a filter base, filter, ultra-
filter consisting exclusively of Lindel6f sets. In this paper we consider L-filters
(ultrafilters) and LC-property. A space X is LC — space if every Lindeldf set
in X has the compact closure in X. A locally compact space X is LC — space
if and only if every L-ultrafilter on X converges. We also consider L-points,
L-sets and LC-extensions.

1. INTRODUCTION AND DEFINITIONS

Throughout this paper, all spaces are assumed to be regular Hausdorff. The
closure of a subset A of a space X is denoted by clx(A) . We use the standard
definitions for filter-base and filter.

For a space X, let £(X) and §(X) denote the families of all nonempty compact
subsets and finite subsets of X, respectively. We assume thatR(X) has the finite
topology and §(X) is a subspace of R(X). That is, K(X) has a base consisting of
the sets of the form:

(Up,...,Up) ={K € A(X): K CU_ [ UAKNU; #0 for each i},

where {Uq, ..., Uy} is a finite family of open subsets of X.These spaces are studied
in [6]. The symbol £(X) denote the family of all nonempty Lindel6f subsets of
X. £(z) denotes the set of all Lindel6f neighbourhoods of x € X.

A topological space X is called a locally Lindelof space if for every x € X there
exists a neighbourhood U of the point = such that clx(U) is a Lindelof subspace
of X.

It is easy to see that every locally compact space is a locally Lindel6f space.

Definition 1.1. A Hausdorff space X is called absolutely closed (or H-closed) if
X is closed in every Hausdorff space in which is embedded ([3]).

Lemma 1.1. A regular space X is compact if and only if every open ultrafilter
on X converges ([3]).
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2. L-FILTERS

A filter-base in £(X) is a non-empty family 8 C £(X) such that if A;, As € B,
then there exists an Az € B such that A3 C A1 N As.

Definition 2.1. A L-filter is a nonempty subfamily § C £(X) satisfying the
following conditions:

(@) 0>5.
(b) If A;, Ay € §, then Ay N Ay € 5.
(c) If A€ F and G € £(X) such that A C G, then G € §.

A filter 4 in £(X) is a maximal filter or a L — ultrafilter, if for every filter §
in £(X) that contains 4 we have § = 4.

One readily sees that for any filter-base B in £(X), the family §u = {A €
L£(X) : there exists a B € B such thatB C A} is a filter in £(X).

Definition 2.2. Let X be a locally Lindelof space.

(a) A point x € X is called a limit of a L-filter § if £(z) C §; we then say that
the L-filter § converges to x and write x € lim§.

(b) A point z is called a limit of a filter base B C £(X) if z € limFg; we then
say that the filter base 2B converges to x and write x € lim*B .

Remark 2.1. Clearly, x € lim®B if and only if every compact neighbourhood of z
contains a member of B.

Definition 2.3. Let X be a locally Lindelof space. A point z is called a cluster
point of a L-filter § (or a filter base B) if 2 belongs to the closure of every member
of § (of B).

Remark 2.2. Clearly, x is cluster point of a L-filter § (or a filter base B) if and
only if every compact neighborhood of x intersects all members of §(or B). This
implies, in particular, that every cluster point of a L-ultrafilter is a limit of this
ultrafilter.

Lemma 2.1. If il is a L-ultrafilter in £(X), the following holds:

(a) If A€ £(X), then ANU #0 for allU e h iff A U
(b) If Ay, As are Lindeldf subsets of X and A1 U Ag € 8, then Ay € U or
Ay e U,
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Proof. (a) <: If A€ 4, then ANU # () for all U € $L
= I ANU #Qforall U € U and A ¢ 4, then UU{A} is a filter base in £(X),
that contains . Since Y is a L-ultrafilter in £(X), it follows that A € 4.

(b): Suppose that A1 ¢ U, As ¢ 4 and A; U As € 4. Let B be a subfamily
of £(X). The set A € £(X) is a member of B iff AU A; € Y. Clearly, B is a
L-filter that contains (. Since Y is a L-ultrafilter in £(X), it follows that A; € U
or Ay e . &

Lemma 2.2. Let X be a hereditarily Lindelf (closed, o -compact, F,) subset of
a topological space Y and let § be a L - filter in £(Y'). The family §x =§NX =
{FNX:Feg}isal - filterin £(X) if and only if FNX # 0, for every F € §.

Proof. (a) Empty set ) ¢ §x <= FNX # 0 for all F' € §. Furthermore, every
member of §x is a Lindelof subset of X.

(b) Let sets A;NX and A2NX be contained in Fx. Then (A;NX)N(A2NX) =
(AlﬂAQ)ﬂX € 35x, (AlﬂAz ES’)

(c) Also, if AN X € § and B is a Lindelof subset in £(X), A C B; then
AUB € £(Y)and AUB € §. We have B=(AUB)NX € §Fx. So, we have
shown that §x is a L - filter on X. $

The following is an immediate consequence of Lemmas 2.2. and 2.1.

Lemma 2.3. . Let X be a hereditarily Lindeldf (o- compact, F,) subset of a
topological space Y and let § be a L - ultrafilter on' Y. The family §x =FNX =
{FNX:F egF}isal - ultrafilter in £(X) if and only if X € §.

Lemma 2.4. .Let X be a hereditarily Lindeldf (o - compact, F,) subspace of a
locally compact space Y. If every L - ultrafilter on Y converges, then every L -
ultrafilter on X converges to some point in cly (X).

Proof. Let U be a L - ultrafilter on X. Since the subset X C Y is ¢ - compact,
it is easy to see that X € 4. It is clear that family U is a L - filter base on Y.
Let ' be the L - ultrafilter on Y generated by 4. Now suppose ' — p € Y. By
Definition 2.3., p € limY’ <= p € cly (U’) for each U’' € {'. Since the family
L C ) the point p € cly (U) for each U € 4. Hence p € lim 4.

Proposition 2.5. Let X be a Lindeldf, dense subspace of a locally compact space
Y. The space Y is compact if and only if every L - ultrafilter on X converges to
some point in Y .

Proof. Let Y be a compact space. It is known that every ultrafilter on Y
converges; in particular, every L - ultrafilter on Y converges. From Lemma 2.4., it
follows that every L - ultrafilter on X converges to some point in Y. Conversely,
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suppose that every L - ultrafilter on X converges. We shall prove that every
open ultrafilter on Y converges. Since Y is locally compact and Hausdorff it is
Tychonoff. By Lemma 1.1., Y is a compact space. If &' is an open ultrafilter on
Yand U=U'NX={U'NX:U" €Y}, then 4 is an open filter on X. Clearly
the family B = {cly (U') N X : U’ € W'} is a filter base in £(X) (L - filter base
on X). Let § be the L - ultrafilter on X generated by 9. Now suppose that
§ —p €Y =cly(X). From Definition 2.3., it follows that p € llim§ <= p €
cly (cly(U') N X) for each U' € Y. Therefore, for each U’ € 4, we have that
p € cy(U)Nely(X) =cy(U')NY. Since, p € cly(U’), for each U’ € &, it is
clear that Y’ converges to p. <

3. L-SETS AND LC-PROPERTY

Now, we introduce the definitions of L-point, L-set and LC-property, which
will be used to be useful in the later discussion.

Definition 3.1. Let X be a topological space.
(a) A point p € X is an L — point if p ¢ clx(F) for each Lindel6f subset
Fc X\ {p}.

(b) Aset AC X isan L — set if ANclx(F) = 0 for each Lindelof subset F'
contained in X \ A.

The symbol £x denotes the set of all L-point of X. It is easy to see that set £x
is a L-set. The converse is not necessarily true. Let R be the set of real numbers.
We define the FEuclidean topology on the set R by using the basis sets of the form
(a,b) ={z € R:a <z < b}. It is known that R is second countable, separable,

locally compact and o-compact.

Every open interval (a,b) is a L-set, since for every Lindel6f subset A C
(—00,a] U [b, +00) the closure clr(A) C (—o0,a] U [b,+00). But £x =0, since R
is second countable.

Definition 3.2. Let X be a topological space.

(a) A point p € X is said to be a P — point if the intersection of countably
many neighborhoods of p is a neighborhood of p .

(b) A point p € X is a weakP — point if p ¢ clx(F) for each countable subset
FcX\{p} [9].

It is clear that every P-point is a weak P-point. Furthermore, it can be shown
that a point p € X is a P-point if and only if every F,-set that is contained in
X \ {p} has the closure contained in X \ {p}.
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Definition 3.3. Let X be a topological space.

(a) A set A C X is said to be a P-set if the intersection of countably many
neighborhoods of A is a neighborhood of A.

(b) A set A C X is a weak P-set(wP — set) if ANclx(F) = () for each countable
set F' contained in X \ A [9].

It is easy to see that every P-set is a weak P-set and every open set of X is a
P-set.

The reader can easily prove the following lemma.

Lemma 3.1. Let X be a topological space. The set A C X is a P-set if and only
if every F,-set that is contained in X \ A has the closure contained in X \ A. If X
is a compact space, then the set A C X is a P-set if and only if every o-compact
set that is contained in X \ A has the compact closure contained in X \ A.

Lemma 3.2. Let X be a reqular space. Then every closed P-set is an L-set.

Proof. Let A be the closed P-set in X and let L be a Lindel6f subset of X \ A.
Since the space X is regular, for every point z € L there exist an open set O, C X'\
A such that clx(O;) C X\ A. The family {O, : x € L} is an open cover of L. Since
L is Limdeldf, there exist countably subfamily ${ = {0, :n€ N} C {O, : z € L}
such that L C U{clx(Oy);n € N} C X \ A. The set U{clx(Oy);n € N} is an F,
subset of X \ A such that L C {clx(O;,) :n € N} and {clx(0y) :ne€ N} C X\ A.
By definition 3.2., is clear that clx (L) C clx (U{clx(On);n € N}) C X\ A. &

Corollary 3.3. Let X be a reqular Ty space. Then every P - point is an L- point.

It is clear that every L-point is a weak P-point. Furthermore, the set £x is a
L-set. The following example shows that no every weak P - point is an L - point.

Example 3.1. Let [0,w1] ([0,wp]) be the space of ordinals less than or equal to
the first uncountable ordinal (first countable ordinal) with the order topology and
[0, w1] %0, wp] the Cartesian product. The subspace X; = [0, w;] %[0, wo]\{(w1,n) :
n € [0,wp)} of [0,w;] x [0,wp] is noncompact and normal in the subspace topology.
Let Xo = X; U{p}, (p ¢ X1) be the one-point compactification of X;. Then the
space X is compact and T; space. It is not Hausdorff since the point p and
(w1,wp) have no disjoint neighbourhoods. The point (w1,wp) is a weak P - point
but it is not a P - point.

Let A= {a, € X2 :n € N} be any countable subset of X5 \ {(w1,wp)} and let
p € A. Then A = {(zpn,Yn) : Tn € [0,w1), y € [0,wp);n € N} where {x,, € [0,w1) :
ne€ N} C[0,wr) and {y, € [0,wp) : n € N} C [0,wp). Let a be an upper bound
for the x,; a < wi, since wy has uncountably many predecessors, while a has only
countably many. Thus the set ([0, a] x [0,wp]) U {p} is closed and compact in Xs.
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Furthermore, A C ([0, a] x [0,wo]) U{p} and (w1,wp) ¢ ([0, a] x [0,wp]) U{p}. Then
(w1,wo) & ([0,a] x [0, wo]) U {p}.

The point (w1,wp) is not an L - point because there exists a o - compact
(Lindelof) subset F' = U{([0,w1) x {k}) U {p} : & € [0,wp)} C X2 such that
ClX2 (F) = XQ.

We need now the following simple lemma taken from 3.1.

Lemma 3.4. Let X be a compact space. The set (point) A C X(a € X) is a
L-set(point) if and only if every Lindeldf set that is contained in X \ A (X \ {a})
has the compact closure contained in X \ A (X \ {a}).

The following example shows that not every P - point is an L - point.

Example 3.2. Let [0,w] ([0,wp]) be the space of ordinals less than or equal to
the first uncountable ordinal (first countable ordinal) with the order topology and
[0,w1] x [0,wp] Cartesian product. The subspace X7 = [0,w1] X [0,wp] \ {(w1,n) :
n € [0,wp)} of [0,w;] x [0,wp] is noncompact and normal in the subspace topology.
Let Xo = X1 U{p}, (p ¢ X1) be the one-point extension of X;. We can define
an topology on X, by declaring open base of the point p any subset of X2 whose
complement is Lindelof subset. Then the space X5 is Lindelof and 17 space.
It is not Hausdorff (compact) since the point p and (w1,wg) have no disjoint
neighbourhoods (since the subsets ([0,w;) x {n})U{p};n € [0,wp) are closed and
noncompact subsets in Xo).

The point (w1,wp) is a P - point but not an L - point. Let A = {4,, C X5 :
n € N} be any o - compact subset of X5 \ (w1, wp).

Case 1. If {p} ¢ 2A then p;(A) and po(2A) are o - compact subsets of [0,w;)
and [0, wp], where p1,pg are projections from X \ {(w1,wp)} onto [0,w1), [0,wo].
Since [0, w1)([0,wo]) is hypercountably ! compact (compact) there exists a compact
subsets [0,a] C [0,w1] and [0,wp] such that p;(A) C [0,«] and po(A) C [0, wo].
The set [0,a] x [0,wp] is closed and compact in Xo \ {(w1,wp)}. Furthermore,
A C [0,a] x [0,wp] and (w1,wp) ¢ clx,(A).

Case Il : Let {p} € A. We will now show that (w1,wp) is a P - point. According
to Case I, the set 2 C ([0, o] x [0,wp]) U {p}. Since ([0, a] x [0,wp]) U{p} is closed
and compact in X9 \ {(w1,wp)}, the point (wy,wp) is a P - point in Xo.

The point (w1,wp) is not anL - point because there exists a Lindeldf subset
F =U{([0,w1) x {k}) U{p} : k € [0,wp)} C X2 such that clx,(F) = Xa.

Remark 3.1. The subspace X5 \ {(w1,wp)} in Example 3.2., is a hypercountably
compact (HCC') space but it is not an LC' - space.

1We shall say that the space X is hypercountably compact(strongly countably compact) if every
o-compact (countable) subset of X has a compact closure see[8]
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Definition 3.4. A topological space X will be called an LC — space if each
Lindelof subspace of X has compact closure.

The following is an immediate consequence of Lemma 3.4., and Definition 3.4.

Lemma 3.5. A Tychonoff space X is LC — space if and only if for every com-
pactification cX of the space X the remainder ¢cX \ ¢(X) is an L - set in cX.

Theorem 3.6. For cvery Tychonoff space X the following conditions are equiv-
alent:

(I) For every compactification cX of the space X the remainder ¢X \ ¢(X) is
an L - set in cX.

(II) The remainder X \ B(X) is an L - set in BX.

(I1I) There exists a compactification cX of the space X the remainder ¢X \c(X)
ts an L - set in cX.

Proof. Implications (I) = (II) and (II) = (I1I) are obvious, so that it suffices
to prove that (I11) = (I).

(III) = (I)case : (III) = LC property and by Lemma 3.5., LC' property
< (1)

A topological space X is L — complete if X is a Tychonoff space and satisfies
condition (I), and hence all the conditions, in Theorem 3.6.

Theorem 3.7. For every Hausdorff locally compact (Tychonoff) space X the
following conditions are equivalent:

(I) The space X is LC.

(II) For every compactification cX the remainder c¢X \ ¢(X) is a L-set in cX.

(IIT) The remainder 83X \ B(X) is an L - set in fX.

(IV') There exists a compactification cX of the space X such that the remainder
cX \ ¢(X) is a L-set in cX.

(V) Every L - filter base on X has a cluster point.

(VI) Every L - ultrafilter on X converges.

Proof. (I) = (II). Since X is locally compact for every compactification ¢X the
remainder ¢X \ ¢(X) is a closed (compact) set in ¢X. If X is LC space, then every
Lindel6f set in ¢(X) has the compact closure in ¢(X). By Lemma 3.5, ¢X \ ¢(X)
is a P-set.

By Lemma 3.5., and Theorem 3.6., (I) < (II) & (III) < (IV).

(V) <= (VI). Obvious.

(I) = (VI). Let U be a L - ultrafilter on X and Uy be a member of . Since X
is LC, clx(Up) =Y is a compact subspace of X. Let {' be the trace of { on Y.
By Lemma 2.2., {’ is a L - filter on Y. Since Y is compact, there exists a point
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p € Y such that p is a cluster point of {'. Clearly the point p is a cluster point of
. Hence every L - ultrafilter on X converges.

(VI) = (I). Suppose that every L - ultrafilter on X converges and let A be any
Lindeldf subset of X. We shall prove that B = clx(A) is compact subset of X.
Clearly, B is Tychonoff. If every open ultrafilter on B converges, By Lemma 1.1, B
is compact. Let U’ be a open ultrafilter on Band 4 = W NA={U'NA:U" e U}.
It is easy to see that the family B = {cix (U)NA : U’ € W'} is a filter base in £(X).
Let § be the L-ultrafilter on X generated by 8. Now suppose that § — p € X.
From Definition 2.3., it follows that p € lim§ <= p € cx(clx(U") N A) for
each U’ € W'. Therefore, for each U’ € ', we have that p € clx(U') Neclx(A) =
cx(U')N B. Since, p € clx(U'") = clp(U’), for each U’ € Y, it is clear that LI’
converges to p € B, Hence, X is a LC-space.$

Proposition 3.8. Fvery closed subspace of an LC' - space is LC' .

Proof. Since Lindel6fness is hereditary with respect to closed subsets, it imme-
diately follows from Lemma 3.5. {

Since compactness and Lindel6fness is hereditary with respect to closed subsets
and finite unions, the following proposition is a consequence of Lemma 3.5 and
Proposition 3.8.

Proposition 3.9. The sum ®&{X,:s € S} is LC - space if and only if all spaces
Xs are LC and the set S is finite.

Proposition 3.10. The Cartesian product of LC - spaces is LC' .

Proof. Let X = x{X, : a € A} be the product of LC - spaces X, and let F'
be any Lindel6f subset of X. Since the projections p, : X — X, from X onto
X, are continuous and open mappings, from each a € A, we have that p,(F) is
a Lindelof subset of X,. The set clx,(p.(F')) is compact in X,. Furthermore,
F CcY = x{cx,(pa(F)) : a € A} and Y is a compact(closed) subspace of X.
Then clx(F) = cly(F) is a compact subset of X. By Theorem 3.6. and Lemma
3.5., X is an LC - space.$

Corollary 3.11. The limit of an inverse sequence of LC - spaces is LC .

Proposition 3.12. Let X be the product of spaces X;, i € {1,2...,n}. If X is
LC - complete space, then every X; are LC .

Proof. Let F; be any Lindelof subset of X;,5 € {1, 2...,n}. For a fixed
rex{X;:ie{l, 2...,n}\{j}} the set A=F x {z} C X is a Lindeldf subset
of X. Since X is an LC - space, clx(A) € R(X). For each X; :j e {1, 2,...,n},
we have that p;(clx(A)) € R(X;), where p; is the projection from X onto Xj.



DUSAN MILOVANCEVIC 7

Furthermore, F' C pj(clx(A)) and clx,(F) € &(X;). Hence, X; is a LC -
space.<»

Since the class of compact (Lindel6f) spaces is perfect, from the definition of
LC - spaces we obtain.

Proposition 3.13. If X and Y are Tychonoff spaces and there exists a perfect
mapping f: X — Y of X onto Y, then X is L - space if and only if Y is LC -
space.

Lemma 3.14. Let £ be a Lindeldf subset of R(X). Then the set || £]| = U{L € £}
1s a Lindeldf subset of X.

Proof. Suppose A = [|£]| = U{L € £}, with £ is a Lindel6f subset of K(X).
Let 4 be a Collection of open subsets of X which covers A. Now let L € £;
then L is a compact subset of X, and hence there exists a finite subcollection
{UL,,...Ur,} of  which covers L, and all of whose elements intersect L. Hence,
for each L € £,8; = (Ur,,...Ur,) is an open neighborhood of L, and there fore
{Ur : L € £} is a covering of £ by open collections. But £ is Lindeldf, so there
exists a countable subcollection {L,..., Ly, -~} of £ such {#z,,.... 8, -~}
is a covering of £. Hence, finally, {{,, :i € N; j=1,...,n(L)} is a countable
subcollection of {{ which covers A.{

Proposition 3.15. Let X be a noncompact Hausdorff space. Then the space
R(X) is a LC-space if and only if X is a LC- space.

Proof. =: Let R(X) is a LC - space. The subspace X = {{z} : 2z € X} C &(X)
is homeomorphic to X. Furthermore, the subspace X is closed in K(X) and by
Proposition 3.8., X is a LC - space.

<: Let £ be a Lindelof subset of R(X). Then, by Lemma 3.14., the set A =
|I£]| = U{L € £} is a Lindelof subset of X. Since the space X is LC, we have that
clx(A) are compact subset in X. The collection exp(A) C K(X) and £ C exp(A).
Furthermore, the subspace exp(A) is closed and exp(A) € K(R(X)). Hence, finally

clax)(£) € R(R(X)).¢

Definition 3.5. A pair (Y,c¢), is called a LC extension of space X, if Y is a
LC space and ¢ : X — Y is a homeomorphic embedding of X in Y such that
cy(c(X)) =Y.
Theorem 3.16. Let X be a Tychonoff space which is not a LC space and let cX
be a compactification of X with the following properties:

(a) The set £.x is not empty set.

(b) The set £.x C cX \ X.

Then there exists a LC extension AX of X such that AX is a subspace of cX.
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Proof. Consider the subspace LC(X) = ¢X \ £.x of ¢X. Since ¢X is compact,
by Theorem 3.7., the remainder c¢X \ £.x is a LC subspace of ¢X. Let AX be
the closure of ¢(X) in LC(X) (¢(X) ~ X). The subspace

AX = clrox)(e(X)) = clex (e(X)) N LC(X) = X N LC(X).

Hence AX = LC(X). Furthermore, the mapping i : ¢(X) — LC(X) defined
as i(y) =y, y € ¢(X), is a homeomorphic embedding of ¢(X) in LC(X). The
mapping ioc: X — LC(X) is a homeomorphic embedding of X in LC(X). By
Definition 3.5., pair (LC(X),io0¢) is a LC extension of space X.{
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