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L-Ultrafilters, L-Sets and Lc-Property

Dušan Milovančević

Abstract. An L-filter base, L-filter, L-ultrafilter is a filter base, filter, ultra-
filter consisting exclusively of Lindelöf sets. In this paper we consider L-filters
(ultrafilters) and LC-property. A space X is LC − space if every Lindelöf set
in X has the compact closure in X. A locally compact space X is LC − space

if and only if every L-ultrafilter on X converges. We also consider L-points,
L-sets and LC-extensions.

1. Introduction and definitions

Throughout this paper, all spaces are assumed to be regular Hausdorff. The
closure of a subset A of a space X is denoted by clX(A) . We use the standard
definitions for filter-base and filter.

For a space X, let K(X) and F(X) denote the families of all nonempty compact
subsets and finite subsets of X, respectively. We assume thatK(X) has the finite
topology and F(X) is a subspace of K(X). That is, K(X) has a base consisting of
the sets of the form:

〈U1, . . . , Uk〉 = {K ∈ K(X) : K ⊂ ∪k
i=1Ui ∧ K ∩ Ui 6= ∅ for each i},

where {U1, . . . , Uk} is a finite family of open subsets of X.These spaces are studied
in [6]. The symbol L(X) denote the family of all nonempty Lindelöf subsets of
X. L(x) denotes the set of all Lindelöf neighbourhoods of x ∈ X.

A topological space X is called a locally Lindelöf space if for every x ∈ X there
exists a neighbourhood U of the point x such that clX(U) is a Lindelöf subspace
of X.

It is easy to see that every locally compact space is a locally Lindelöf space.

Definition 1.1. A Hausdorff space X is called absolutely closed (or H-closed) if
X is closed in every Hausdorff space in which is embedded ([3]).

Lemma 1.1. A regular space X is compact if and only if every open ultrafilter
on X converges ([3]).
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2. L-filters

A filter-base in L(X) is a non-empty family B ⊂ L(X) such that if A1, A2 ∈ B,
then there exists an A3 ∈ B such that A3 ⊂ A1 ∩ A2.

Definition 2.1. A L-filter is a nonempty subfamily F ⊂ L(X) satisfying the
following conditions:

(a) ∅ ∋ F.

(b) If A1, A2 ∈ F, then A1 ∩ A2 ∈ F.

(c) If A ∈ F and G ∈ L(X) such that A ⊂ G, then G ∈ F.

A filter U in L(X) is a maximal filter or a L − ultrafilter, if for every filter F

in L(X) that contains U we have F = U.

One readily sees that for any filter-base B in L(X), the family FB = {A ∈
L(X) : there exists a B ∈ B such thatB ⊂ A} is a filter in L(X).

Definition 2.2. Let X be a locally Lindelöf space.
(a) A point x ∈ X is called a limit of a L-filter F if L(x) ⊂ F; we then say that

the L-filter F converges to x and write x ∈ limF.
(b) A point x is called a limit of a filter base B ⊂ L(X) if x ∈ limFB; we then

say that the filter base B converges to x and write x ∈ limB .

Remark 2.1. Clearly, x ∈ limB if and only if every compact neighbourhood of x
contains a member of B.

Definition 2.3. Let X be a locally Lindelöf space. A point x is called a cluster
point of a L-filter F (or a filter base B) if x belongs to the closure of every member
of F (of B).

Remark 2.2. Clearly, x is cluster point of a L-filter F (or a filter base B) if and
only if every compact neighborhood of x intersects all members of F(or B). This
implies, in particular, that every cluster point of a L-ultrafilter is a limit of this
ultrafilter.

Lemma 2.1. If U is a L-ultrafilter in L(X), the following holds:

(a) If A ∈ L(X), then A ∩ U 6= ∅ for all U ∈ U iff A ∈ U

(b) If A1, A2 are Lindelöf subsets of X and A1 ∪ A2 ∈ U, then A1 ∈ U or
A2 ∈ U.
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Proof. (a) ⇐: If A ∈ U, then A ∩ U 6= ∅ for all U ∈ U.
⇒: If A∩U 6= ∅ for all U ∈ U and A /∈ U, then U∪{A} is a filter base in L(X),

that contains U. Since U is a L-ultrafilter in L(X), it follows that A ∈ U.

(b): Suppose that A1 /∈ U, A2 /∈ U and A1 ∪ A2 ∈ U. Let B be a subfamily
of L(X). The set A ∈ L(X) is a member of B iff A ∪ A1 ∈ U. Clearly, B is a
L-filter that contains U. Since U is a L-ultrafilter in L(X), it follows that A1 ∈ U

or A2 ∈ U. ♦

Lemma 2.2. Let X be a hereditarily Lindelöf (closed, σ -compact, Fσ) subset of
a topological space Y and let F be a L - filter in L(Y ). The family FX = F∩X =
{F ∩X : F ∈ F} is a L - filter in L(X) if and only if F ∩X 6= ∅, for every F ∈ F.

Proof. (a) Empty set ∅ /∈ FX ⇐⇒ F ∩X 6= ∅ for all F ∈ F. Furthermore, every
member of FX is a Lindelöf subset of X.

(b) Let sets A1∩X and A2∩X be contained in FX . Then (A1∩X)∩(A2∩X) =
(A1 ∩ A2) ∩ X ∈ FX , (A1 ∩ A2 ∈ F).

(c) Also, if A ∩ X ∈ F and B is a Lindelöf subset in L(X), A ⊂ B; then
A ∪ B ∈ L(Y ) and A ∪ B ∈ F. We have B = (A ∪ B) ∩ X ∈ FX . So, we have
shown that FX is a L - filter on X. ♦

The following is an immediate consequence of Lemmas 2.2. and 2.1.

Lemma 2.3. . Let X be a hereditarily Lindelöf (σ- compact, Fσ) subset of a
topological space Y and let F be a L - ultrafilter on Y . The family FX = F∩X =
{F ∩ X : F ∈ F} is a L - ultrafilter in L(X) if and only if X ∈ F.

Lemma 2.4. .Let X be a hereditarily Lindelöf (σ - compact, Fσ) subspace of a
locally compact space Y . If every L - ultrafilter on Y converges, then every L -
ultrafilter on X converges to some point in clY (X).

Proof. Let U be a L - ultrafilter on X. Since the subset X ⊂ Y is σ - compact,
it is easy to see that X ∈ U. It is clear that family U is a L - filter base on Y .
Let U′ be the L - ultrafilter on Y generated by U. Now suppose U′ → p ∈ Y . By
Definition 2.3., p ∈ limU′ ⇐⇒ p ∈ clY (U ′) for each U ′ ∈ U′. Since the family
U ⊂ U′, the point p ∈ clY (U) for each U ∈ U. Hence p ∈ limU. ♦

Proposition 2.5. Let X be a Lindelöf, dense subspace of a locally compact space
Y . The space Y is compact if and only if every L - ultrafilter on X converges to
some point in Y .

Proof. Let Y be a compact space. It is known that every ultrafilter on Y
converges; in particular, every L - ultrafilter on Y converges. From Lemma 2.4., it
follows that every L - ultrafilter on X converges to some point in Y . Conversely,
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suppose that every L - ultrafilter on X converges. We shall prove that every
open ultrafilter on Y converges. Since Y is locally compact and Hausdorff it is
Tychonoff. By Lemma 1.1., Y is a compact space. If U′ is an open ultrafilter on
Y and U = U′ ∩ X = {U ′ ∩ X : U ′ ∈ U′}, then U is an open filter on X. Clearly
the family B = {clY (U ′) ∩ X : U ′ ∈ U′} is a filter base in L(X) (L - filter base
on X). Let F be the L - ultrafilter on X generated by B. Now suppose that
F → p ∈ Y = clY (X). From Definition 2.3., it follows that p ∈ limF ⇐⇒ p ∈
clY (clY (U ′) ∩ X) for each U ′ ∈ U′. Therefore, for each U ′ ∈ U, we have that
p ∈ clY (U ′) ∩ clY (X) = clY (U ′) ∩ Y . Since, p ∈ clY (U ′), for each U ′ ∈ U′, it is
clear that U′ converges to p. ♦

3. L-sets and LC-property

Now, we introduce the definitions of L-point, L-set and LC-property, which
will be used to be useful in the later discussion.

Definition 3.1. Let X be a topological space.

(a) A point p ∈ X is an L − point if p /∈ clX(F ) for each Lindelöf subset
F ⊂ X \ {p}.

(b) A set A ⊂ X is an L − set if A ∩ clX(F ) = ∅ for each Lindelöf subset F
contained in X \ A.

The symbol LX denotes the set of all L-point of X. It is easy to see that set LX

is a L-set. The converse is not necessarily true. Let R be the set of real numbers.
We define the Euclidean topology on the set R by using the basis sets of the form
(a, b) = {x ∈ R : a < x < b}. It is known that R is second countable, separable,

locally compact and σ-compact.

Every open interval (a, b) is a L-set, since for every Lindelöf subset A ⊂
(−∞, a] ∪ [b, +∞) the closure clR(A) ⊂ (−∞, a] ∪ [b, +∞). But LX = ∅, since R
is second countable.

Definition 3.2. Let X be a topological space.

(a) A point p ∈ X is said to be a P − point if the intersection of countably
many neighborhoods of p is a neighborhood of p .

(b) A point p ∈ X is a weakP − point if p /∈ clX(F ) for each countable subset
F ⊂ X \ {p} [9].

It is clear that every P -point is a weak P -point. Furthermore, it can be shown
that a point p ∈ X is a P -point if and only if every Fσ-set that is contained in
X \ {p} has the closure contained in X \ {p}.
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Definition 3.3. Let X be a topological space.

(a) A set A ⊂ X is said to be a P -set if the intersection of countably many
neighborhoods of A is a neighborhood of A.

(b) A set A ⊂ X is a weak P -set(wP −set) if A∩clX(F ) = ∅ for each countable
set F contained in X \ A [9].

It is easy to see that every P -set is a weak P -set and every open set of X is a
P -set.

The reader can easily prove the following lemma.

Lemma 3.1. Let X be a topological space. The set A ⊂ X is a P -set if and only
if every Fσ-set that is contained in X \A has the closure contained in X \A. If X
is a compact space, then the set A ⊂ X is a P -set if and only if every σ-compact
set that is contained in X \ A has the compact closure contained in X \ A.

Lemma 3.2. Let X be a regular space. Then every closed P -set is an L-set.

Proof. Let A be the closed P -set in X and let L be a Lindelöf subset of X \ A.
Since the space X is regular, for every point x ∈ L there exist an open set Ox ⊂ X\
A such that clX(Ox) ⊂ X\A. The family {Ox : x ∈ L} is an open cover of L. Since
L is Limdelöf, there exist countably subfamily U = {On : n ∈ N} ⊂ {Ox : x ∈ L}
such that L ⊂ ∪{clX(On); n ∈ N} ⊂ X \ A. The set ∪{clX(On); n ∈ N} is an Fσ

subset of X \A such that L ⊂ {clX(On) : n ∈ N} and {clX(On) : n ∈ N} ⊂ X \A.
By definition 3.2., is clear that clX(L) ⊂ clX(∪{clX(On); n ∈ N}) ⊂ X \ A. ♦

Corollary 3.3. Let X be a regular T1 space. Then every P - point is an L- point.

It is clear that every L-point is a weak P -point. Furthermore, the set LX is a
L-set. The following example shows that no every weak P - point is an L - point.

Example 3.1. Let [0, ω1] ([0, ω0]) be the space of ordinals less than or equal to
the first uncountable ordinal (first countable ordinal) with the order topology and
[0, ω1]×[0, ω0] the Cartesian product. The subspace X1 = [0, ω1]×[0, ω0]\{(ω1, n) :
n ∈ [0, ω0)} of [0, ω1]× [0, ω0] is noncompact and normal in the subspace topology.
Let X2 = X1 ∪ {p}, (p /∈ X1) be the one-point compactification of X1. Then the
space X2 is compact and T1 space. It is not Hausdorff since the point p and
(ω1, ω0) have no disjoint neighbourhoods. The point (ω1, ω0) is a weak P - point
but it is not a P - point.

Let A = {an ∈ X2 : n ∈ N} be any countable subset of X2 \ {(ω1, ω0)} and let
p ∈ A. Then A = {(xn, yn) : xn ∈ [0, ω1), y ∈ [0, ω0); n ∈ N} where {xn ∈ [0, ω1) :
n ∈ N} ⊂ [0, ω1) and {yn ∈ [0, ω0) : n ∈ N} ⊂ [0, ω0). Let a be an upper bound
for the xn; a < ω1, since ω1 has uncountably many predecessors, while a has only
countably many. Thus the set ([0, a]× [0, ω0])∪ {p} is closed and compact in X2.
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Furthermore, A ⊆ ([0, a]× [0, ω0])∪{p} and (ω1, ω0) /∈ ([0, a]× [0, ω0])∪{p}. Then
(ω1, ω0) /∈ ([0, a] × [0, ω0]) ∪ {p}.

The point (ω1, ω0) is not an L - point because there exists a σ - compact
(Lindelöf) subset F = ∪{([0, ω1) × {k}) ∪ {p} : k ∈ [0, ω0)} ⊂ X2 such that
clX2

(F ) = X2.

We need now the following simple lemma taken from 3.1.

Lemma 3.4. Let X be a compact space. The set (point) A ⊂ X(a ∈ X) is a
L-set(point) if and only if every Lindelöf set that is contained in X \A (X \ {a})
has the compact closure contained in X \ A (X \ {a}).

The following example shows that not every P - point is an L - point.

Example 3.2. Let [0, ω1] ([0, ω0]) be the space of ordinals less than or equal to
the first uncountable ordinal (first countable ordinal) with the order topology and
[0, ω1] × [0, ω0] Cartesian product. The subspace X1 = [0, ω1] × [0, ω0] \ {(ω1, n) :
n ∈ [0, ω0)} of [0, ω1]× [0, ω0] is noncompact and normal in the subspace topology.
Let X2 = X1 ∪ {p}, (p /∈ X1) be the one-point extension of X1. We can define
an topology on X2 by declaring open base of the point p any subset of X2 whose
complement is Lindelöf subset. Then the space X2 is Lindelöf and T1 space.
It is not Hausdorff (compact) since the point p and (ω1, ω0) have no disjoint
neighbourhoods (since the subsets ([0, ω1)×{n})∪ {p}; n ∈ [0, ω0) are closed and
noncompact subsets in X2).

The point (ω1, ω0) is a P - point but not an L - point. Let A = {An ⊂ X2 :
n ∈ N} be any σ - compact subset of X2 \ (ω1, ω0).

Case I: If {p} /∈ A then p1(A) and p0(A) are σ - compact subsets of [0, ω1)
and [0, ω0], where p1, p0 are projections from X2 \ {(ω1, ω0)} onto [0, ω1), [0, ω0].
Since [0, ω1)([0, ω0]) is hypercountably 1 compact (compact) there exists a compact
subsets [0, α] ⊂ [0, ω1] and [0, ω0] such that p1(A) ⊂ [0, α] and p0(A) ⊂ [0, ω0].
The set [0, α] × [0, ω0] is closed and compact in X2 \ {(ω1, ω0)}. Furthermore,
A ⊂ [0, α] × [0, ω0] and (ω1, ω0) /∈ clX2

(A).

Case II : Let {p} ∈ A. We will now show that (ω1, ω0) is a P - point. According
to Case I, the set A ⊂ ([0, α]× [0, ω0])∪ {p}. Since ([0, α]× [0, ω0])∪ {p} is closed
and compact in X2 \ {(ω1, ω0)}, the point (ω1, ω0) is a P - point in X2.

The point (ω1, ω0) is not anL - point because there exists a Lindelöf subset
F = ∪{([0, ω1) × {k}) ∪ {p} : k ∈ [0, ω0)} ⊂ X2 such that clX2

(F ) = X2.

Remark 3.1. The subspace X2 \ {(ω1, ω0)} in Example 3.2., is a hypercountably
compact (HCC) space but it is not an LC - space.

1We shall say that the space X is hypercountably compact(strongly countably compact) if every
σ-compact (countable) subset of X has a compact closure see[8]
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Definition 3.4. A topological space X will be called an LC − space if each
Lindelöf subspace of X has compact closure.

The following is an immediate consequence of Lemma 3.4., and Definition 3.4.

Lemma 3.5. A Tychonoff space X is LC − space if and only if for every com-
pactification cX of the space X the remainder cX \ c(X) is an L - set in cX.

Theorem 3.6. For every Tychonoff space X the following conditions are equiv-
alent:

(I) For every compactification cX of the space X the remainder cX \ c(X) is
an L - set in cX.

(II) The remainder βX \ β(X) is an L - set in βX.

(III) There exists a compactification cX of the space X the remainder cX\c(X)
is an L - set in cX.

Proof. Implications (I) ⇒ (II) and (II) ⇒ (III) are obvious, so that it suffices
to prove that (III) ⇒ (I).

(III) ⇒ (I)case : (III) ⇒ LC property and by Lemma 3.5., LC property
⇔ (I).♦

A topological space X is L − complete if X is a Tychonoff space and satisfies
condition (I), and hence all the conditions, in Theorem 3.6.

Theorem 3.7. For every Hausdorff locally compact (Tychonoff) space X the
following conditions are equivalent:

(I) The space X is LC.

(II) For every compactification cX the remainder cX \ c(X) is a L-set in cX.

(III) The remainder βX \ β(X) is an L - set in βX.

(IV ) There exists a compactification cX of the space X such that the remainder
cX \ c(X) is a L-set in cX.

(V ) Every L - filter base on X has a cluster point.

(V I) Every L - ultrafilter on X converges.

Proof. (I) ⇒ (II). Since X is locally compact for every compactification cX the
remainder cX \c(X) is a closed (compact) set in cX. If X is LC space, then every
Lindelöf set in c(X) has the compact closure in c(X). By Lemma 3.5, cX \ c(X)
is a P -set.

By Lemma 3.5., and Theorem 3.6., (I) ⇔ (II) ⇔ (III) ⇔ (IV ).

(V ) ⇐⇒ (V I). Obvious.

(I) ⇒ (V I). Let U be a L - ultrafilter on X and U0 be a member of U. Since X
is LC, clX(U0) = Y is a compact subspace of X. Let U′ be the trace of U on Y .
By Lemma 2.2., U′ is a L - filter on Y . Since Y is compact, there exists a point
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p ∈ Y such that p is a cluster point of U′. Clearly the point p is a cluster point of
U. Hence every L - ultrafilter on X converges.

(V I) ⇒ (I). Suppose that every L - ultrafilter on X converges and let A be any
Lindelóf subset of X. We shall prove that B = clX(A) is compact subset of X.
Clearly, B is Tychonoff. If every open ultrafilter on B converges, By Lemma 1.1, B
is compact. Let U′ be a open ultrafilter on B and U = U′∩A = {U ′∩A : U ′ ∈ U′}.
It is easy to see that the family B = {clX(U ′)∩A : U ′ ∈ U′} is a filter base in L(X).
Let F be the L-ultrafilter on X generated by B. Now suppose that F −→ p ∈ X.
From Definition 2.3., it follows that p ∈ limF ⇐⇒ p ∈ clX(clX(U ′) ∩ A) for
each U ′ ∈ U′. Therefore, for each U ′ ∈ U′, we have that p ∈ clX(U ′) ∩ clX(A) =
clX(U ′) ∩ B. Since, p ∈ clX(U ′) = clB(U ′), for each U ′ ∈ U′, it is clear that U′

converges to p ∈ B, Hence, X is a LC-space.♦

Proposition 3.8. Every closed subspace of an LC - space is LC .

Proof. Since Lindelöfness is hereditary with respect to closed subsets, it imme-
diately follows from Lemma 3.5. ♦

Since compactness and Lindelöfness is hereditary with respect to closed subsets
and finite unions, the following proposition is a consequence of Lemma 3.5 and
Proposition 3.8.

Proposition 3.9. The sum ⊕{Xs : s ∈ S} is LC - space if and only if all spaces
Xs are LC and the set S is finite.

Proposition 3.10. The Cartesian product of LC - spaces is LC .

Proof. Let X = ×{Xa : a ∈ A} be the product of LC - spaces Xa and let F
be any Lindelöf subset of X. Since the projections pa : X −→ Xa from X onto
Xa are continuous and open mappings, from each a ∈ A, we have that pa(F ) is
a Lindelöf subset of Xa. The set clXa

(pa(F )) is compact in Xa. Furthermore,
F ⊂ Y = ×{clXa

(pa(F )) : a ∈ A} and Y is a compact(closed) subspace of X.
Then clX(F ) = clY (F ) is a compact subset of X. By Theorem 3.6. and Lemma
3.5., X is an LC - space.♦

Corollary 3.11. The limit of an inverse sequence of LC - spaces is LC .

Proposition 3.12. Let X be the product of spaces Xi, i ∈ {1, 2 . . . , n}. If X is
LC - complete space, then every Xi are LC .

Proof. Let Fj be any Lindelöf subset of Xj , j ∈ {1, 2 . . . , n}. For a fixed
x ∈ ×{Xi : i ∈ {1, 2 . . . , n} \ {j}} the set A = F × {x} ⊂ X is a Lindelöf subset
of X. Since X is an LC - space, clX(A) ∈ K(X). For each Xj : j ∈ {1, 2, . . . , n},
we have that pj(clX(A)) ∈ K(Xj), where pj is the projection from X onto Xj .
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Furthermore, F ⊂ pj(clX(A)) and clXj
(F ) ∈ K(Xj). Hence, Xj is a LC -

space.♦

Since the class of compact (Lindelöf) spaces is perfect, from the definition of
LC - spaces we obtain.

Proposition 3.13. If X and Y are Tychonoff spaces and there exists a perfect
mapping f : X −→ Y of X onto Y , then X is L - space if and only if Y is LC -
space.

Lemma 3.14. Let L be a Lindelöf subset of K(X). Then the set ‖L‖ = ∪{L ∈ L}
is a Lindelöf subset of X.

Proof. Suppose A = ‖L‖ = ∪{L ∈ L}, with L is a Lindelöf subset of K(X).
Let U be a Collection of open subsets of X which covers A. Now let L ∈ L;
then L is a compact subset of X, and hence there exists a finite subcollection
{UL1

, . . . ULn
} of U which covers L, and all of whose elements intersect L. Hence,

for each L ∈ L, UL = 〈UL1
, . . . ULn

〉 is an open neighborhood of L, and there fore
{UL : L ∈ L} is a covering of L by open collections. But L is Lindelöf, so there
exists a countable subcollection {L1, . . . , Lm, · · · } of L such {UL1

, . . . ,ULM
, · · · }

is a covering of L. Hence, finally, {ULi,j
: i ∈ N ; j = 1, . . . , n(L)} is a countable

subcollection of U which covers A.♦

Proposition 3.15. Let X be a noncompact Hausdorff space. Then the space
K(X) is a LC-space if and only if X is a LC- space.

Proof. ⇒: Let K(X) is a LC - space. The subspace X = {{x} : x ∈ X} ⊂ K(X)
is homeomorphic to X. Furthermore, the subspace X is closed in K(X) and by
Proposition 3.8., X is a LC - space.

⇐: Let L be a Lindelöf subset of K(X). Then, by Lemma 3.14., the set A =
‖L‖ = ∪{L ∈ L} is a Lindelöf subset of X. Since the space X is LC, we have that
clX(A) are compact subset in X. The collection exp(A) ⊂ K(X) and L ⊂ exp(A).
Furthermore, the subspace exp(A) is closed and exp(A) ∈ K(K(X)). Hence, finally
clK(X)(L) ∈ K(K(X)).♦

Definition 3.5. A pair (Y, c), is called a LC extension of space X, if Y is a
LC space and c : X −→ Y is a homeomorphic embedding of X in Y such that
clY (c(X)) = Y .

Theorem 3.16. Let X be a Tychonoff space which is not a LC space and let cX
be a compactification of X with the following properties:

(a) The set LcX is not empty set.

(b) The set LcX ⊂ cX \ X.

Then there exists a LC extension ΛX of X such that ΛX is a subspace of cX.
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Proof. Consider the subspace LC(X) = cX \ LcX of cX. Since cX is compact,
by Theorem 3.7., the remainder cX \ LcX is a LC subspace of cX. Let ΛX be
the closure of c(X) in LC(X) (c(X) ≈ X). The subspace

ΛX = clLC(X)(c(X)) = clcX(c(X)) ∩ LC(X) = cX ∩ LC(X).

Hence ΛX = LC(X). Furthermore, the mapping i : c(X) −→ LC(X) defined
as i(y) = y, y ∈ c(X), is a homeomorphic embedding of c(X) in LC(X). The
mapping i ◦ c : X −→ LC(X) is a homeomorphic embedding of X in LC(X). By
Definition 3.5., pair (LC(X), i ◦ c) is a LC extension of space X.♦
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